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The amplitude and the shape of the quasielastic resolution function of a neutron two-axis spectrometer 
are calculated in the Gaussian approximation. Special attention is given to the explicitness of the for- 
mulae as well as to their absolute correctness, avoiding any unknown proportionality factors. The 
results are applied to the analysis of the elastic scattering of neutrons in crystals. 

1. Introduction 

In an experiment to analyse the angular distribution of 
scattered neutrons, carried out with a crystal diffrac- 
tometer (two-axis spectrometer), the finite collimations, 
the monochromator mosaic structure and the beam- 
path configuration influence both the counting rate 
and the experimental line width. This influence should 
be quantitatively described by an instrumental func- 
tion, the so-called resolution function. 

The knowledge of the resolution function makes 
possible the choice of advantageous experimental 
conditions as well as the correct interpretation of 
experimental data. That is why great attention has been 
paid to the problem of determining the dependence of 
the diffractometei" resolution function on all experi- 
mental factors. 

The early papers in which resolution effects were 
considered deal with elastic-scattering experiments, 
their principal aim being the calculation of Bragg peak 
width and relative intensities for some usual experi- 

mental methods (Caglioti, Paoletti & Ricci, 1958' 
1960; Caglioti & Ricci, 1962; Sailor, Foote, Landon & 
Wood, 1956; Willis, 1960). 

In a more general treatment, Cooper & Nathans 
(1968a) have shown, also for elastic experiments, that 
the counting rate is given by the convolution, in the 
space of wave-vector transfers Q ( Q = k ~ - k s ) ,  of the 
scattering cross section with the resolution function 

I(Q°) = I a(Q)R(Q)dQ.  

Q0 is the nominal setting of the instrument as defined 
by the most probable wave vectors kx and kF. In the 
Gaussian approximation, assuming that both the 
transmission functions of collimators and the reflec- 
tivity of the monochromator crystal are Gaussian-like 
functions, the elastic resolution function of the dif- 
fractometer can be written 

3 
R(Qo+X)=R0 exp { -½  ~ M~X~Xj) (1) 

i , . i =  l 
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where )(1, Xz,.,Ya are the Cartesian components of X =  
Q - Q 0 .  2"1 is chosen parallel to - Q 0  and 2"3 is vertical 
(perpendicular to the scattering plane). R0 and M~j 
depend on Q0 as well as on instrumental parameters. 

The case of an inelastic experiment performed on a 
two-axis spectrometer has recently been considered by 
Tucciarone, Lau, Corliss, Delapalme & Hastings 
(1971). 

In the treatment presented below the Cooper- 
Nathans formulation is extended to derive the quasi- 
etastic resolution function of a neutron two-axis 
spectrometer, the quasielastic scattering process being 
considered as the most general case for which the two- 
axis analysis represents a really efficient experimental 
method. 

As for many physical systems (e.g. polycrystals, 
liquids, paramagnetics) the scattering cross section is a 
function of Q rather than of Q, this case is considered 
separately in order to obtain the most simple, straight- 
forward relations between resolution function and 
instrumental parameters. 

Special attention is attached to the explicitness of 
the formulae as well as to their absolute correctness, 
avoiding any unknown proportionality factors. 

The results are used to reconsider the elastic scat- 
tering of neutrons in perfect as well as in mosaic im- 
perfect crystals, by calculating the width and absolute 
value of the integrated intensity of a Bragg peak as 
obtained in a general linear scan. 

For the sake of brevity mathematical derivations and 
some applications are given in an Appendix. 

2. Quasielastic resolution function of a two-axis neutron 
spectrometer 

The first step in the derivation of the resolution func- 
tion is to define the counting rate as an average of the 
scattering cross section over the space and energy 
distributions of neutrons in the incoming and scattered 
beams. For a given setting the counting rate may be 
written as 

I(kb ke)= N I ~(kt)TM(k~,kl) da 
dks 

× T.0~f,k~)e(~f)~dks. (2) 
N is the number of atoms (or unit cells) in the sample. 
~(k) is the k density of the neutron flux [~(k)--- 
cb0k exp (-kZ/k~.)/2nk~., where q~o is the total thermal 
flux and kr  = (2mkBT)l/Z/h]. TM(k~, k~) is the transmis- 
sion function of the monochromator system for k~ 
neutrons when the kt neutrons are preferentially 
transmitted, da/dk~r is the scattering cross section of 
the sample per atom (or unit cell) and volume unit in 
k s - space. TA(ks, kv) has the same meaning as 
Tu(k~,kt) but fo r  the analysing system, e(ks) is the 
detector counting efficiency for kf neutrons. 

In the next stage, the variables defining the cross sec- 
tion are introduced in equation (2) to replace an equal 
number of the six variables (k~,kf). The integration 

over the remaining variables yields the resolution func- 
tion. Generally, when the inelastic processes are 
analysed on a two-axis spectrometer, this integration 
may not be performed. However, for quasielastic 
scattering cross sections, under special experimental 
conditions which make sure that in the scattered beam 
the neutron energy distribution represents a narrow 
band around El (the most probable incident energy) 
so that the slowly varying functions of kf can be re- 
placed by their values in kl, the integration becomes 
possible producing an explicit analytical expression for 
the resolution function. This requirement may be 
achieved by a suitable choice of the instrumental 
parameters. For instance, if the scattering cross section 
is Lorentzian with half width AE: 

d2o - ( A E )  2 

d~dEe ( ~ E ) 2 + ( e , - E f )  2 ' 

the half width of the neutron energy distribution in the in- 
coming beam [with the notation of Cooper & Nathans 
(1967)] 

qMOCO + rlMO~l + ~0~x 
z/E~ = -~- [ctg OM[ 2 In 2 ~2 + 4r/2U+ ct2 

(3) 

must be fixed at a value which allows the convolution 
of the cross section with the incident neutron intensity 

J(Ei)=J(Et) exp [ - l n  2(E~-E~)2/(zIE~) 2] 

to be sufficiently narrow. The half width of the convolu- 
tion of a Lorentzian with a Gaussian has been cal- 
culated by Teutsch (1971); when AE~<AE, e.g., it is 
smaller than ~I .6AE.  If necessary, more severe re- 
strictions may be imposed on the ratio AE~/AE 
through equation (3). 

The derivation of the (Q, co) and the (Q, co) resolu- 
tion functions is briefly explained in the Appendix. A 
more detailed mathematical treatment is given in a 
preprint (Grabcev, 1973a). 

The (Q, co) resolution function 
As shown in the Appendix, for a quasielastic cross 

section, when the scattering angle is much larger than 

• =_j 

Q0 

kl 

°,, l 

Fig. 1. Vector diagram in reciprocal space for the most prob- 
able scattering process. 
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the collimation angles (i.e. the small-angle scattering 
case is excluded) and the instrumental parameters are 
chosen in the sense of the discussion at the begining of 
§ 2, the counting rate may be written as 

I(k i, ke) = I(Qo) = ~ ( k  i)e(k i) 

x IS(Qo, X, X4)R(Qo, X, Xg)dXdX4 (4) 

where X4=co=(h/2m) (k~-k}), S=Nhd2a/df2dEf 
while R(Qo, X, X4) is the resolution function. 

In this definition, the resolution function is a dimen- 
sionless quantity expressing the relative sensitivity of 
the instrument for a scattering process characterized 
by h(Q0 + X) and hX4 momentum and energy transfer, 
when the diffractometer nominal setting corresponds 
to hQo momentum transfer and the most probable 
process is an elastic one. 

In the Gaussian approximation the resolution func- 
tion is given by 

4 

R(Qo, X, X4)=Ro(Qo) exp [ -½ ~ M,j(Qo)X, Xj], (5) 
i , j = l  

where )(1, X2, X3 have the same meaning as in equation 
(1), the only difference being the arbitrary orientation 
of the i axis relative to the scattering vector (Fig. 1); 
for a certain physical situation it may be particularized 
in a suitable mode. 

The (Q, co) resolution fimetion 
When the scattering cross section is expressed in 

terms of the magnitude of the momentum transfer it is 
convenient to define a corresponding resolution func- 
tion depending on this variable too. In this case the 
counting rate takes the following form: 

I( Qo) = ~b( k i)e( k l) 

x l S(Qo, X~,X4)N(Qo, XI, X4)dXldX4 (6) 

where XI=Q-Qo while N(Qo, X~,x4) is the (Q, co) 
resolution function, given by: 

N(Qo, X~,X4)=No(Oo) 
× exp { -  ½(denx~ + 2d//14X1X 4 -F , . , ~ 4 4 X ~ ) } ,  (7) 

In order to define the (Q, co) resolution function as a 
dimensionless quantity as well, the k density of the 
neutron flux, ~b(k)=4~rkZq~(k), has been introduced in 
equation (6). 

Between R(Q, co) and N(Q, co) the following rela- 
tions may be found: 

R0 
G0= 2k~(M2zM33)~/2 (8a) 

M~2M2j (8b) 
J¢/ii = M~j M22 

Even if the two-axis spectrometer provides no 
energy resolution, there exists an explicit dependence 
of its resolution function on energy transfer, which 

must be taken into account in quasielastic experiments 
(e.g. critical scattering with x ¢ 0, quasielastic scattering 
in liquids) to correct the angular distribution data for 
inelastic effects. 

The presence of O(co) in elastic-scattering cross sec- 
tions cancels the energy-dependent part of the resolu- 
tion function, the counting rate being given in this case 
by 

I(Qo)=g~(k~)e(kl) IS(Q0, X)R(Q0, X)dX (9) 

o r  

I(Qo)=q)(kx)e(kx) IS(Qo, X1)~(Qo, X1)dX1 (10) 

where: 
3 

R(Q0,X)=R0(Qo) exp {-½ ~ M, jX~Xj} (11) 
l , J=l  

and 
1 2 N(Qo, XO=~o(Qo) exp {-~JC/nX~} (12) 

are the elastic resolution functions while S=Nda/df2. 
Equations (4) and (6) make possible the calculation 

of widths and intensities in any experimental situation 
as well as attempts to find how the instrumental 
parameters (incident neutron energy, collimation, 
monochromator crystal) should be changed in order 
to give more advantageous experimental conditions. 

The explicit analytical formulae for the (Q, co) and 
the (Q, co) resolution functions are given in the Appen- 
dix. The unconventional nomenclature used there 
[equations (33) and (37)] is more convenient for the 
explicitness of the formulae. Moreover, a unified nota- 
tion for the horizontal collimation angles and mosaic 
spread of the monochromator system [the m~ coeffi- 
cients from equation (33)] is imposed by the remark- 
able equivalence of these elements in the expression for 
the resolution function, a l=  1/2~ is a remnant of a 
similar notation used for the analysing system in a 
paper devoted to the resolution function of a triple- 
axis spectrometer (Grabcev, 1973b). Although the 
resolution function of the diffractometer may be ob- 
tained from that derived for a triple-axis spectrometer 
by putting kF=tg OA=ki, PA=I, aa=fla=r/a=oo, it 
has been considered here independently both to avoid 
the necessity of knowing details concerning triple-axis 
spectroscopy and to outline the salient features of the 
two-axis analysis. 

3. Application to the analysis of elastic scattering of 
neutrons in crystals 

The equation of the diffraction pattern of a perfect 
single crystal is obtained by introducing in equation 
(9) the elastic coherent scattering cross section (Cassels, 
1951): 

da (2n) 3 
d ~  - Vc IF(Q)I2 ~ ~(Q + 2~zz) 

g 

A C 3 0 A -  6 
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where Vc is the volume of the unit cell, F(Q) is the 
structure factor including the Debye-Waller factor 
and ~ is any vector in the reciprocal lattice of the 
sample. There results: 

/(Qo)= N (2r03Vc ~(kl)e(k,) ~, IF ( -  2zcx)lZRo( - 2rex) 

3 

xexp {-½ ~ M,j(Q0~+Zrcr~)(Qoj+2rcr~}, (13) 
i , j = l  

i.e. a set of peaks whose widths and intensities are 
essentially determined by the resolution function. 

For a certain x, putting 

q = Q0 + 2 ~ ,  

equation (13) indicates that the locus of points in Q 
space for which the counting rate is p times smaller 
than in the Bragg position (Q0 = - 2 m )  is an ellipsoid: 

MllqZ+2M~2qlq2+M22q~+Ma3q~=2 lnp.  (14) 

Consequently, the shape of a Bragg peak is dependent 
on the direction of displacement in Q space during the 
scan. Equation (13) makes possible the calculation of 
width and intensity for any scan. However, only linear 
scans will be considered here, there being no evident 
advantage for a scan whose trajectory in Q space is a 
more or less complicated curve. 

If qe~ (~ and ( are coordinates in q space given by: 

q~ = q¢~ cos ~ cos ( 
qz=q~ sin ~ cos ( (15) 
q3 = q¢~ sin ( ,  

the Bragg peak measured along a fixed, arbitrary direc- 
tion, defined by the angles ~ and 0 is described by: 

l(Os, q~)=I(OB) exp [-½M(~0q~] (16) 
where: 

M(~0 = Mxl cos 2 ~ cos 2 ( +  2Mx2 cos ~ sin ~ cos 2 ( 
+ MEZ sin 2 ~ cos 2 ( +  Maa sin 2 (, (17) 

while I(OB) is the maximum intensity: 
(2X) 3 

I(0B) = U ----#-~ q)O~,)e(k~) IF ( -  2m)lZRo( - 2rex). 

(18) 
Therefore, the Bragg peaks are Gaussians whose 
integrated intensities and half widths at half-maximum 
are given by: 

2re ~/2 
I(,O= f I(O~,q,~)dq,¢=I(OB) [--M~-~] (19) 

and 
[ 2 In 2 ]1/2 

L(~0=  [ M(~0 J (20) 

The M~j coefficients defining in equation (14) the 
equi-intensity ellipsoids are nothing other than the 
elements of the resolution matrix corresponding to 
Qo = -2rex. That means that, at these particular 

points of Q space, R(Q) may be directly determined 
experimentally from the widths and integrated inten- 
sities of Bragg peaks of a perfect crystal, measured in 
various scanning modes (Cooper & Nathans, 1968b). 

By a proper choice of the reference frame the resolu- 
tion ellipsoids can be directly visualized in the recip- 
rocal lattice of the sample. 

Equations (19) and (20) are used in the Appendix 
to derive the integrated intensities and half widths of 
Bragg peaks of a perfect crystal, corresponding to 
several conventional scans. 

The coherent-scattering cross section of a mosaic 
crystal may be found by averaging the cross section of 
a perfect crystal with respect to the mosaic-block 
distribution (Cooper & Nathans, 1968a). From this 
(see the Appendix), there results the following expres- 
sion for the counting rate: 

I'(Qo)=I'(On) exp [ -½(M~,q 2 + 2M~zqlq2 
+ M'22q~ + M33qZ)] (21) 

where I'(08) and M'~j are dependent on the mosaic 
spread of the sample as well as on the diffractometer 
resolution function. Consequently, the formulae 
established for the widths and integrated intensities of 
a perfect crystal are valid in this case too, provided 
I(OB) and M~j are replaced by I'(08) and M ~j respec- 
tively. The results obtained for some particular linear 
scans are listed in Table 2. 

The (Q, co) resolution function is used in the Appen- 
dix to derive the equation for the diffraction pattern of 
a polycrystal and the intensity of the incoherent back- 
ground. 

The expressions for half widths and integrated inten- 
sities collected in Table 2 and equations (86) are in 
agreement with those reported by Caglioti, Paoletti & 
Ricci (1958, 1960) and Caglioti & Ricci (1962) and (or) 
by Cooper (1968) and Cooper & Nathans (1968b). 
Moreover, here are given the absolute values of inten- 
sities as well as their dependence on vertical collima- 
tiomand mosaic spreads. 

APPENDIX 
Derivation of the (Q, co) resolution function 

The notation is, generally, that of Cooper & Nathans 
(1967). y~ and ~ are the horizontal divergence and 
collimation angles; 6, and fl~ are their corresponding 
vertical components, i=0,1,2,  refer to the in-pile 
monochromator-to-sample and sample-to-detector re- 
gions, r/M and r/~ are the horizontal and vertical mosaic 
spreads of the monochromator crystal while PM is the 
reflectivity of that crystal for the most probable neu- 
trons. 0s is the scattering angle. 

In Fig. 1 is shown a vector diagram in reciprocal 
space corresponding to the most probable scattering 
proces. The k axis of a Cartesian reference frame is 
chosen for convenience perpendicular to the plane of 
experiment defined by kl and kr The orientation of i 
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axis gi.ven by the angle.C, is arbitrary: Making use of 
the measuring-angles convention, described in Table 1, 
kt, kv, k~ and ke may be written as follows" 

kt = k l  cos ~bi + / q  sin ~bj 
ke=k~ cos (~b+0~)i+k1 sin (~+0s)j ... 
k~ =k~ cos (ff+7~) ccs 6~i 

+ k~ sin (ff + )'~)- oos 6,i + k~ sin Otk 
k s = k j, cos (~ + 0, + )'2) cos 62i 

+ k~, sin (4 + Os + ~2) cos 62j + ks sin 62k. (22) 

The monochromator and analyser transmission 
functions are expressed in simple forms in terms of 
k~, Yl, )'2, 6t and 62. Thus• 

TM(k,, k,) = Tun(k,  y~)T~v(31) 
T.(kz, k~) = T~,,()'~) T ~ ( ~ )  

where Tun and Tuv are the horizontal and Vertical 
transmission• functions of t h e  monochromator:  

Tgn(k~,)'O = p u  e x p  - ~ 7~ + 2 k/S-. tg 0u 

1()',+ k.i:'ks t g0~)2 .~  ) '~]],  ' (23) 
i .,. ~ :. 

< flo 
T~v(,3,)= (flo~ + 2lr/~ sin 2 0M) ~/2 

1 1 ' 

Tan and Tav are the horizontal and vertical trans- 
mission functions of the analyser" 

T A n ( y 2 ) = e x p  ( - - ) ' ~  (25) 2~ l 

("-- ~z~ ~ (26) Tar(62) = exp 2fl2 ! • , 

For the actual values of tlae collimation angles and 
of the monochromator mosaic spread, the transmis- 
sion functions (23)-(26) are measurably different from 
zero only when )'~, )'2, ~ and 62 do not exceed one or 
two degrees and  Ik~---k~l < k v - O n  the other hand, for 
quasielastic cross sections, in the special experimental 
conditions discussed in the main text, the energy dis- 
tribution in the scattered neutron beam takes essenti- 
ally non-zero values only if Ikf-k~l <k~. Under these 
circumstances: "~ 

(a) All the integration limits in the expression ob- 
tained from equation (2), replacing the variables k, 

and k s by u~=(k~-kf )  tg OM/k~, u2=ks-ki,•y~, Y2, ~ 
and ~2, may be extended to ( - 0 %  + o  o) without in- 
troducing an appreciable error in the value of the 
integral. 

(b) The slowly varying functions of k~ and ky may 
be replaced by their values in k~. 

,(c) The small-angle approximation may be used in 
equations (22) for )' and 3. 

The next step is to replace the variables )'l, )'2, u2 and 
62 by X =  Q -  Q0 and X4 = (h/2m) (k~- k}). When the 
scattering angles are much larger than the collimations, 
7~, )'2, u2 and ~2 are given by: 

. Yl = `4i0/'/1 + `411Xl + `412X2 + "414)(4 
)'2 = A20ul + A2iX1 + A22X2 + A24X4 (27) 
u2 = Aaoul + AalX1 +Aa2X2 + Aa4X4 

and 
32 = Ot- Xa/k, . (28) 

where: .... • i :  ' 

A~o- tg (0U2) - A ~ =  cos (~b+0~) 
tg 0M kl sin 0~ 

sin (~b + 0~) -(m/h)  
"412= kxsin Os A 1 4 =  k~ sin 0, 

cos ~b 
(29) 

ks sin 0~ -. 

-(m/h) cos 0~ 
k 2 sin 0~ 

A34= -m/(hks). 

A2o = - Alo A z l -  
• • 

. ,,, ,, sin ~ A24 . . . .  
A22-- k~ sin 0, 

Aao = kUtg OM Aji =Aa2 = 0 

W h e n  care has been taken to include the Jacobians 
of the variable transformations, after integration over 
u~ and ~ ,  thei, e i~sultg the expression from equation 
(4) given in the main text, defining the resolution func- 
tion as: 

4 
R(Qo, X, X4)=Ro(Qo) exp ( -½ ~, M~jX~Xj) (30) 

i , J = l  

where" ' ,  
; Ro(Qo)=Rou(Qo)Rov (31) 

and : 
f .. 

" Mi. s = M~i. (32) 

For the description of Ron, Roy and Mt~ some new 
definitions are introduced: 

1 1 1 
m l = - a - - r ,  m2 = , m a -  

2q~t 2 e 2 '  zctg 
1 

ax-  2~22 

(33) 

(34) M =  m~m2 + 4m:m3 + m2m3 

Angle  

Y 

• ~" . .~, . :  

6 

Table 1. Measuring-angles convention 

R a n g e  ; Origin Posit ive sense 
( - r e ,  + n) The  mos t  p robab le  k. - • ,  T r igonomet r i ca l  _. 

: ( ' - ~ ,  + r0--; ~ ~ Tile mos t  p robab le  k incident .  < -'~ TNgonomet r i ca l  
( =  z£, + ~ ) .  :, ~ :-,~ i:axis. : : T r igonomet r i ca l  
( -  re/2, + rr/2) ,z~.  Projec t ion  of  k on hor izonta l  plane,  kz posit ive.  

A C 30A - 6* 
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S~ = (Alo + 2)2ml + (Alo + 1)2m2 +/l~o(m3 + a0 (35) 

T~(n)=Ato(Au+ Az,)+(3-n)A2, (36) 

1 1 
vi--: 2fl 2 , v2 = 2fl 2+8r/~ sin 20M' 

1 1 
~ -  2 / ~ '  v -  2/~2 ~ . 

Then" 

(37) 

Roll---- [sin 0~ tg 0MI (38) 

[ 1]:/)2 ]1/2 
Roy = v~(v2 + v3 + V) (39) 

For i,j= 1,2,4: 

2 3 
M,s= --~l [MAuAls+ax ~ T,(n)Ts(n)m,, ] (40) 

n=l 

M3~=0 (41) 
while: 

2 V(v2 + v3) 
M ~  = k--~" ~ + v~----~ V " (42) 

Derivation of the (Q, co) resolution function 

As in the general case, the deviations from the no- 
minal values are used" 

X = Q - Q o  

X4=o9. (43) 

When the i axis of the reference frame (see Fig. 1) is 
directed along Q0" 

Q2_ Q~ X~ + x2z + X] 
x =  Q+Qo.,- ,  )(1+ 2Qo ~ x 1 .  (44) 

The procedure for the resolution function calcula- 
tion is similar to the one in the previouS section• Thus 
X1 and X4 are introduced in the expression of the 
counting rate to replace two of th~ six variables 
(ui,)'1,,~i, uz, )'2, ~2), say :Yl and u2. 

From equations (27) and (29) there result: 

where: 

71-72 + B10ul + B~lX~ + BuX4 
u2 = B30ui + B31Xi + B34X4 (45) 

Bio = 2A lo 

sign 0~ 
Bu = All - Azi = - kl cos (0s/2) 

Bi4 = Ai4-  A24 - (m/h) k2 tg(0J2) 

B 3 I = A 3 ~ .  

(46) 

The integration over the remaining variables gives 
the equation (6) defining the (Q, o9) resolution function 
a s :  

~(Oo, Xi, X4)=~o(Oo) exp [ _ ~(d/~iX11 2 
+ 2d/fi4X~X4 + ~'44X42)] (47) 

where: 

7~ PM 1 
~°(Q°)= 41tg 0M cos (0J2)l ($2) t/2 [ ]1,2 

x v~V(v2+ v3) 
and" 

$2 is given by" 

(48) 

.//¢, s = 2MalBuBls (49) 
s,~ 

$2 = M + al[(B10 + 2)2ml + (B~o + 1)2m2 + B20ma]. (50) 

Bragg peaks of a perfect crystal 

When the i axis of the reference frame is in the oppo- 
site direction to a certain reciprocal vector of the 
sample, i.e. z = - q ,  according to equation (13) the 
corresponding Bragg peak is described by: 

I(Qo)=I(OB) exp [-½M~l(Oo~- 2~z't') 2 

+ 2M12(aol- 2fez)Q02 + M22Qo22] (51) 

2. ' ,r  

k/:' X(/k  
kF" • 

k l" 

Fig. 2. Diagram in the horizontal plane illustrating the rela- 
tionship between mis-setting angles and the most probable 
wave vectors. 
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where I(On) represents the peak intensity, occuring 
when 

Q02 =kt[sin ~b- sin (~b+0~)] =0 (52) 
and 

Qol=k1[cos ~b-cos (~b+Os)]=2nr=2k:lsin Onl. (53) 

The condition (52) leads to: 

~b =(zc/2) sign 0~-0~/2 (54) 

while (53) demands: 

Os=2On. (55) 

The shape of the peak is dependent on scanning 
procedure. In our particular reference frame Q0 may 
be changed by rotating k~ and kp about a vertical axis. 
The rotation of the sample through an angle -~0 from 
the optimum position (see Fig. 2) is equivalent to the 
rotation of both kx and kF, through an angle (p, to posi- 
tion k~ and k~, the scattering angle remaining equal to 
20n. The detector rotation by an angle X represents a 
rotation of k~ through the same angle, to kj~'. In this 
configuration: 

~b=(z~/2) sign 0n-0n+~0 (56a) 

O~ = 20n + X (566) 

and consequently: 

Qol - 2z~ = k:x cos On (57a) 

Qo2=kx(x + 2~p) sin On. (57b) 

At a rotation of the reference frame (i.e. of the 
sample) through a small angle ~, (comparable with the 
vertical collimation angles) about the j axis, the com- 
ponents of the scattering vector are changed in the 
following way: 

Qol = Qol cos ~_~ Q01 
Qo2= Qo2 (58) 

Qoa = Q0~ sin ~u- ~(2r~ + k~z cos On) "" 2k: ~ sin On. 

As it may be seen in equations (58) the horizontal 
component of the scattering vector is not changed when 
~u is a small quantity; the greater ~u values are not 
important owing to the vertical collimation. Conse- 
quently, all the results obtained so far under the over- 
simplifying condition Q03=0 remain valid and the 
counting rate for a general configuration defined by 
mis-setting angles (p, 2' and ~, is given by: 

I(On, q)=I(On) exp [-½(Mlxq z + 2Mlzqlq2 
+ M2zq~ + Maaqa2)] (59) 

where 
q~ = Q0~ + 2~v~. 

According to equations (57) and (58): 

ql = kt2" cos On (60a) 

q2 = k~(z + 2~0) sin On (60b) 

qs =2k:~ sin On. (60c) 

The elements of the resolution function from equa- 
tion (59) are given by equations (38)-(42) in which, in 
agreement, with equations (54)  and (55), ~b= 
(n/2) sign 0n-0B and 0s= 2On. 

Hence: .~ 
A10 = - A20 = tg On / tg 0M = a = dispersion parameter 

(Caglioti, Paoletti & Ricci, 1958) 

Axl = - A21 -- sign 0B 
2kl cos On (61) 

sign 08 
Ai2=A22= 2k: sin On " 

Then: 
S l=(a+2)Zml+(a+ l)2m2+a2(m3+al) (62) 

and: 

61 122 
Mll = 2Slk~ cos 2 0B M22 = 2Slk 2 sin2 0n 

62 l~ 
M12 = 2Slk 2 sin On cos 0n M33- 2k~ sin 2 On 

(63) 
where: 

ltt= M+ (4ml + m2)al 
112=- M +  [~(a+ 1)mx +(2a+ 1)m2]al 
122=M+[4(a+ 1)2ms +(2a+ 1)2m2+4a2ma]ax (64) 
133=4V(vz+v3) sin z On/(v2+va+ V). 

The maximum intensity is obtained when q=0, 
i.e. X=~0=gt=0; it may be written as: 

/(0B) = Cs [ v2 ]1/2 
(~$1) I/2 " Vz(V2 + v3 + V) (65) 

where Cs is a proportionality factor: 

C=(2nl/n)3~(k:)e(k:) NIF[ 2 PM 
Vclsin 20hi Itg 0MI " 

(66) 

Introducing the coordinates defined in equations 
(15) there results: 

q¢¢ = k:[z z + 4(Z~0 + (p2 + ~u2) sin 2 0B]1:2 (67a) 

~=arctg ( Z~2~p~ tg 08) (67b) 

2g tg On 
(=arctg ( [z2 +(X + 2(p)2 tg2 OB]l/2 ) • (67e) 

Equations (19) and (20) from the main text together 
with the above formulae make possible the calculation 
of the width and integrated intensity for any linear 
scan. Some conventional scans will be discussed below. 

Crystal (q~) scan 
In the (~0) scan, the sample crystal is rotated about 

a vertical axis keeping the detector fixed in the Bragg 
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position. In this situation Z = ~  = 0 and according to  
equations (67) ~=rc/2 and (=0 .  Then q~=•qa=0, i.e. 
the equi-intensity ellipsoids are scanned along the j 
axis. Therefore" 

= ( 2 1 n 2 ]  1/z 
L~, \ M2 2 / (68b) 

In equations (68) I,o and L~ are expressed in units of 
Q. However, usually the Bragg peaks are ~plotted in 
terms of angular units. Equations (68) may be re- 
written on a ~0 scale by dividing them by a scale factor 
equal to 2k, lsin 0hi, as obtained from equation (67a). 
Hence, on a ~0 scale, the peak integrated intensity and, 
half width are given by: 

1)2 +] i/2. 
• C~ v6v ,  + v3 + :,,- :, ~i]2 V) 

k~22] , 

In 2S-1 )~/2 

~q~ ~'-~ ( /22 

(69a) 

(69b) 

Crystal-detector (~o,- 2q~) scan 
In this scan 27= -2~p and ~ =0. Then ~ = ( =  0 and 

q~=q3=0, i.e, the scanning is performed along the 
i axis. Hence 

I~,,._2+=I(0~) ~ (70a) 
.. . 

= [21n2'~  1/z 
L~,_2~, \ Mn ] ,.  ~ (70b) 

while on the ~p-scale" 

: ' ~ " - 2 " -  (ln) 1/~ v~(v2+v3+ V )  (71a) 

_ [ In 2S1 ~ m 
*~e~'-2~- \~t]-n--] " (71b) 

The scale factor is now 2k~lcos 0~1. ' 

Detector (Z) scan 
When the crystal is kept fixed in the Bragg position 

and the detector is rotated (~0 = ~ = 0), ~ = 0~ and ~ = 0. 

Then: 
q~ = k~z cos 0~ 
q2 = k~z s{n On 

q3 = 0  

and consequently" 
• + 

x M~ cos z O~ + 2M~ cos O~ sin O~ ÷ M~2 sin ~ O~ 

I/2 

(723) 

- Mn cos 20B+2M~z'cos 08 sin OB+M22 sin 20~ 
(72b) 

On the X scale (scaling factor k~)" " 

Cs i) 2 1/2 
" f i x - [ (S1_a2a l )a l ]1 /2  [ 1)1(1)2 ÷/)3 • V) ] (730) 

[ ln2S1 ] '/2 
~ x =  (Sl-a2al)al  (73b) 

Vertical (~)scan , 
I f  the crystal is rotated-from the Bragg position 

about the j. axis (~0=3=0), (=n/2 ,  i.e. the scanning is 
performed along the k axis. The integrated intensity 
and half width of the peak are in this case given by: 

_ 

: :I~,=I(0~) \-~33] . (74a) 

121n 
L~,= \ M33 I (74b) 

On the ~'i scale (scaling factor 2k Isin 0BI)" 

J * =  21sin 0~ ($1) '/2 v lV(v2+v3)  (75a) 

[ In 2 ] 1/2 
, Le+= ~ t-7~-~ ] " (75b) 

' Bragg peaks of a mosaic imperfect crystal 

If a certain reciprocal vector of the most probable 
mosaic blocks is in the opposite direction to the i axis 
(i.e. z = - d ) ,  the corresponding-reciprocal vector 
attached to a mosaic block described by the horizontal 
and vertical mosaic angles ~01 and ~'1, respectively, is 
given by" 

~' "~ - zi + rtplj + z~,lk. 
Then 

dam I do" " '~--~ = ~ ~ [~'(~Pl, ~l)]~(q~l)~(~'i)dq~ld~q 

where ~a(qh) and ~(~ul) are the distribution functions 
of the m~aic  angles. When they are Gaussians with 
half widths ~q~su = (2 In 2)l/2r/s and ~ s v  = (2 In 2)U2r/s 
respectively, the scattering cross section becomes: 

dam ]FI 2 
dO - Vcz2r/sr/s :exp [-(Q22/~2 

+ Q2]lls2)/(8n2z2)]6(Q 1 - 2rtz). 

Introducing this into equation (9) leads to expression 
(21) for the counting rate, where: 

I , (0B)  = I(0~) 1/2, (76 )  

l~ + l) ( 2 ~ l ~ +  1)1 
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while the M~s are given by the same formulae as 
M u [equations (63)] in which the l u are replaced by 
l;s: 

l~ 1) l;l=(8rlla~M+l'O/_ ( 2r/i ~ + 

l;z=l,z/ (2~II 122 1) 

l~2 1) 

l;3=133/(2qsZla3 + 1). (77) 

As indicated in the main text the derivation of the 
results from Table 2 is now straightforward. In the 
limiting case, r/s=r/s=0, these results are reduced to 
those corresponding to a perfect crystal. 

A particular case, important in practice, is worth 
remembering: in a parallel setting of two identical 
crystals (which may have different mosaic spreads), 
with relaxed horizontal collimation between them, 
a = - 1, ma = 0, and consequently: 

~ 2 = 2  In 2(r/~t +r/~) (78a) 
' 2 _ _  2 L~'~ - ~ = 2 In 2(~o 2 + ct2). (78b) 

D i f f r a c t i o n  p a t t e r n  o f  a p o l y c r y s t a l  

Introducing in equation (10) the coherent elastic- 
scattering cross section of a polycrystal 

dop 1 ~. n, 
IF(Q) IZf(Q 2m) ,  

dO - 2V¢ ~ - - f f  

there results the following equation for the diffraction 
pattern : 

I(Qo) = ~(k~)e(k~) ~--~ ~ n, iF(2m)lZN, o(2m ) 

x exp [-½,,~/'n(Qo- 2re)z] , 

were n, is the multiplicity factor. 

For a certain r, the maximum intensity is obtained 
when Q0=2m, i.e. 

0s=20B. (80) 

In a general position defined by the detector mis- 
setting angle 27, 27=08-20B, the magnitude of the 
scattering vector is given by: 

Qo=2~rz+k127 cos 0n. (81) 

According to equations (48), (49) and (80) 

xPM [ v2 ]1/2 
~o(2m) - 4ltg 0M cos 0/~l (122) 1/2 Vl  V(v2 + Va) 

(82a) 

2Mal 
d//n(2m ) -  k2 cos20B12 2 . (82b) 

Then the counting rate becomes: 

I(Qo) = I(OB) exp ( -  27z), (83) Mal 

where I(OB) represents the maximum intensity: 

I(0~)- Cv [ v2 ]~/2 
(~lz2) 1/2 Vl V(vz + v3) (84) 

C v is a proportionality factor: 

n, Cs (85) 
C v -  8lsin 0BI " 

Consequently, on the 27 scale, the integrated intensi- 
ties and half widths of Bragg peaks of a polycrystal are 
given by: 

(86a  

(Mal) 1/2 vl V(v2 + v3) (86b) 

When the Q units are used (scale factor k1[cos 0B[): 

L x = k1[cos 0n[~°z (87a) 
lx=k, lcos 0~lJz • (87b) 

Scan 

[~o) z=O 
~,=o 

(~o, - 2~o) Z = - 2~0 

~=0 

(z) ~o = o 
~v=o 

(~,) o,=o 
2,=0 

Table 2. The half widths and integrated intensities of Bragg peaks of a mosaic crystal 

Defini- 
tion Scale Half width Integrated intensity 

(0 ,.W~, = [In 2(S~/122 + 2r/~)] ~/2 ,.,¢~, = C~ [ 02 1"' 
(I22) tl2 ,. Vl(V2 + v3 + V) ( 2q'82133 + 1 )] 

= ( ~  + .~,~)m 

St + 2~2s122 ] 2/2 
Se~0, - 2~0 = [In 2 -/~ ~ ~=sa~--M ] 

[ v2 ]1,2 
o¢~,-2q,= (l**+8rflsatM)t/2 v~(v2+v3+ V) (2r/82183+ 1) 

~ =  [In 2 $1 + 2~1~lz2 1 ''~ J ; =  
a,( S~ - a ~ )  + ~a~ MJ 

c. r 1 
[a~(S~ - a~a,) + 2~,~a~M] "2 [v,(v2 + v3 + V) (2~%3 + 1)) 

£.~, = [In 2(1//33 + 2r/~2)1 ~/2 

= ( ~ ,  + ~ , , ) ' ~  

j%= c, [ v2 _]'~ 
[&(2~l=lS~ + 1)]'2 v~(v2 + v3 + V) 
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The incoherent background 

Assuming the Debye-Waller factor is a slowly varying 
function of Q, the counting rate due to the incoherent 
scattering is obtained from equations (10), (48) and 
(49): 

line __ Cine ] 1/2 (Max) 1/2 [ V2 (88) 
vl V(v, + v3) J 

where: 

Cine=~rZl/zccb(kz)e(kz)Nk~ daine Pu  (89) 
dO [tg 0M[ " 
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Interpretation of Short-Range-Order Scattering of Electrons; Application to Ordering 
of Defects in Vanadium Monoxide 
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Diffuse scattering of electrons from local order of defects in vanadium monoxide of composition VO1.23 
has been studied above the ordering temperature. Intensity expressions for short-range-order scattering 
involving defects of more than one kind are derived, both for the kinematical case and with Bragg 
scattering effects included. The interpretation is based upon comparison between experimental and cal- 
culated distributions in intensity space and vector space, mainly in projections where Bragg scattering 
effects are small or moderate. The scattering can be interpreted in terms of defect clusters consisting of 
one metal interstitial surrounded by four metal vacancies, as in the ordered structure V52064. The local 
arrangement of clusters is different from that found in the ordered phase, however. 

1. Introduction 

The ease with which patterns of diffuse scattering from 
single crystals can be obtained in electron diffraction 
has made it a useful tool for the study of local order of 
defects. However, emphasis in applications has almost 
exclusively been on the qualitative side. Quantitative 
interpretation of diffuse scattering in terms of order 
parameters, as was developed in the X-ray case some 
20 years ago, has been tried only to a very limited ex- 
tent. The main reasons for this are associated with the 
strong interaction between the incident electron and 
the crystal. This may call for more complicated inten- 
sity expressions than those given by kinematical theory, 
especially when strong Bragg reflexions are excited, 
and will also render the extraction of short-range-order 
scattering from other types of diffuse scattering more 
difficult. 

General expressions for diffuse scattering of electrons 
including dynamical interactions through Bragg reflex- 
ions have previously been developed (Gjonnes, 1965, 
1966; Gjonnes & H6ier, 1971). It was found that sub- 
stitutional short-range order in binary alloys represents 
a relatively simple case (Fisher, 1965), the Bragg scat- 
tering effects leading mainly to a redistribution of dif- 
fuse scattering between different Brillouin zones. When 
more than one lattice site is involved in the ordering, 
the situation becomes more complicated, but also more 
interesting, since the Bragg scattering effects on the 
diffuse scattering may then introduce features which 
carry information which is not contained in purely 
kinematical experiments. 

Our reasons for starting a study on the vanadium- 
oxygen system stemmed, to some extent, from such 
considerations. The defect rocksalt-type oxides of tran- 
sition metals (TiO, FeO, VO, etc.) contain many de- 


